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1. Introduction
This paper presents fast methods for computing the set of
“mean-variance efficient” portfolios for an investor who can
sell securities short as well as buy them long, provided
that certain conditions are satisfied. One might think that
ever-faster computers obviate the need for such fast algo-
rithms. However, analyses with large numbers of securities,
users waiting for answers in real time, Monte Carlo simula-
tion runs that require many reoptimizations, and simulation
experiments requiring many simulation runs, make speedy
computation of efficient frontiers still prized. (Parkinson’s
Law continues to outpace Moore’s law.)

A feasible portfolio is one that meets specified con-
straints. A mean-variance efficient portfolio is one that pro-
vides minimum variance among feasible portfolios with a
given (or greater) expected return, and maximum expected
return for given (or less) variance. The expected return and
variance provided by an efficient portfolio is called an effi-
cient mean-variance (EV) combination. The set of all effi-
cient EV combinations is called the efficient frontier.

The critical line algorithm (CLA) traces out a piecewise
linear set of efficient portfolios that provide the efficient
frontier, subject to any system of linear equality or weak
inequality constraints. In general, the inputs to the CLA are
constraint parameters, the means and variances of securi-
ties, and the covariances between pairs of securities.

The CLA is especially fast if the covariances between
securities are described by a “factor model.” A factor
model assumes that the return on a security depends lin-
early on the movement of one or more factors common
to many securities (e.g., a general market factor, industry
factors, a flight-to-quality factor) plus the security’s inde-
pendent “idiosyncratic” term. The use of a factor model not
only accelerates computation, it also reduces input require-
ments. Furthermore, factor model inputs (including regres-
sion coefficients of security returns against factors, and
variances of underlying factors) are more easily understood,
and more easily adjusted to reflect changing conditions,
than are the coefficients of a full covariance matrix.

In fast efficient-set algorithms using factor models, “fic-
titious securities” are introduced into the model, one for
each common factor (see Sharpe 1963, Cohen and Pogue
1967). The “amount invested” in each fictitious security is
constrained to be a linear combination of the investments
in the real securities. With the model thus augmented, the
covariance matrix becomes diagonal, or nearly so, and the
equations for the pieces of the efficient set become much
easier to solve.

Scenario models provide an alternative to factor mod-
els for describing the relationships among security returns.
A scenario model enumerates different scenarios that can
occur in the future and estimates the mean and variance of
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each security’s return under each scenario. Fast efficient-
set algorithms using scenario models are similar to those
using factor models. Fast algorithms (albeit not quite as
fast) also exist that combine factor and scenario models of
covariance.

Fast computational methods are also available for covari-
ances computed from historical returns with many more
securities than observations. Applicable cases encountered
in practice include ones with thousands of securities, but
only dozens of months or hundreds of days worth of
observations.

This paper presents fast algorithms for tracing out effi-
cient sets when factor, scenario, or certain historical mod-
els are assumed, and when the investor is allowed to short
securities.

Some capital asset pricing models (CAPMs) assume, in
effect, that one can sell a security short without limit and
use the proceeds to buy securities long. This is a math-
ematically convenient assumption for hypothetical models
of the economy, but it is unrealistic. Actual constraints
on long-short portfolios change over time and, at a given
instant, vary from broker to broker and from client to
client. Thus, the portfolio analyst charged with generating
an efficient frontier for a particular investor must model the
specific constraints to which that investor’s choice is sub-
ject, including constraints the investor itself imposes as a
matter of policy. To our knowledge all such constraints—
whether imposed by regulators, brokers, or self-imposed—
are expressible as linear equalities or weak inequalities and
therefore can be incorporated into the general portfolio
selection model. Later, we will give examples of current
real-world constraints, but our results are not restricted to
some particular constraint set.

A portfolio optimization with n securities, which can be
bought long or sold short, may be set up as a model with
n variables representing long positions and another n vari-
ables representing short positions. The types of constraints
noted in the preceding paragraph are easily expressed in
terms of the 2n variables. However, even if a factor or
scenario model holds for the n securities held long, it
does not hold for the 2n-variable model representing short
and long positions. Specifically, the 2n-variable long-short
model violates the assumption that the idiosyncratic terms
are uncorrelated. Nevertheless, under certain assumptions,
if the requisite information (e.g., regression coefficients and
idiosyncratic variances for the factor model for the 2n vari-
ables) is fed into the appropriate factor or scenario program,
a correct efficient frontier results.

The principal result of this paper is a sufficient condition
that assures that an existing (originally long-only) factor
or scenario code will compute the correct answer to the
long-short problem. We refer to this condition as “Prop-
erty P.” Property P does not hold in general for an arbi-
trary long-short portfolio selection model, but it appears to
be widely satisfied in practice. When a factor or scenario
model of covariance is assumed and Property P is satisfied,

a fast algorithm for the long-short model is readily at
hand. No new programming is needed. The long-only pro-
gram produces the correct answer to the 2n-variable long-
short problem, despite the “error” in assumption. Also,
the fast algorithm for historical covariance matrices (when
the number of securities greatly exceeds the number of
observations) produces correct answers to the 2n-variable
long-short problem, whether or not Property P holds.

The results reported in this paper generalize a result
due to Alexander (1993) and Kwan (1995). Their results
apply to the Elton et al. (1976) algorithm. The Elton et al.
algorithm assumes only one constraint equation—namely,
a budget constraint—and makes special assumptions about
the factor structure of a factor model.

Section 2 defines the “general” mean-variance prob-
lem. Section 3 summarizes its solution by CLA. Section 4
describes how the covariance matrix can be (almost) diag-
onalized if a factor, scenario, or historical model of covari-
ance is used. Section 5 outlines short sales in the real world.
Section 6 presents notation for portfolio optimization with
short sales and a diagonizable model of covariance. Sec-
tion 7 derives fast methods for solving the latter problem.
Section 8 illustrates the results. Section 9 summarizes.

2. The General Mean-Variance Problem
Suppose that the return RP on the portfolio over some forth-
coming period is a weighted sum of the n security returns
R= �r1� r2� � � � � rn�

′,

RP =R′X� (1)

where the weights X = �X1� � � � �Xn�
′ are chosen by the

investor. Assuming that the ri are random variables with
finite means and variances,

EP =
n∑

i=1

�iXi =�′X� (2)

VP =
n∑

i=1

n∑
j=1

�ijXiXj =X ′CX� (3)

where EP and VP are the expected return and variance of
the portfolio, �= ��1� � � � ��n�

′ are the expected returns on
the n securities, �ij is the covariance between ri and rj , and
C is the covariance matrix ��ij�. Markowitz (1959) assumes
that X is chosen subject to the following constraints:

AX = b� (4)

X � 0� (5)

where A is an m×n constraint matrix and b an m compo-
nent “right-hand side” vector.

As in linear programming, constraints (4) and (5) can
represent weak linear inequalities �� or �� by use of slack
variables. For example,∑
j

aijXj � b (6)
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is written as

∑
j

aijXj +Xs = b� Xs � 0� (7)

Also, a variable Xi not required to be nonnegative is han-
dled in (4) and (5) by substituting for it

Xi =Xip −Xin� Xip � 0� Xin � 0� (8)

where Xip and Xin are the positive and negative parts of Xi.
It is not required that the covariance matrix C in (3)

be nonsingular. This is essential, because X may include
risk-free securities, slack variables, and pairs of securities
representing short and long positions. Also, sometimes C
is estimated from historical returns with less periods than
there are securities. Any of these circumstances will result
in det�C�= 0. In addition, it is desirable for the computa-
tional procedure not to fail if A in (4) is not of full rank.

A portfolio X is said to be feasible if it satisfies con-
straints (4) and (5). A pair of real numbers �EP �VP � is said
to be a feasible EV combination if EP and VP satisfy (2)
and (3) for some feasible portfolio X. A feasible �EP �VP �
pair is inefficient if some other feasible pair �E∗

P �V
∗
P � domi-

nates it; that is, has higher expected return, E∗
P > EP , but no

higher variance, V ∗
P � VP ; or, has lower variance, V ∗

P < VP ,
but no lower expected return, E∗

P � EP . If �EP �VP � is not
thus dominated, it is called an efficient EV combination.
A feasible portfolio X is efficient or inefficient according
to whether its �EP �VP � is efficient or inefficient.

The general (single-period) mean-variance portfolio
selection problem is to find all efficient EV combinations,
and feasible portfolios that yield these, for all possible
A�b��, and C in (2), (3), (4), and (5). Problems with weak
linear inequalities and variables not required to be nonneg-
ative can be converted into this form.

3. Solution to the General Problem
It is possible that, for a given A and b, the model is infea-
sible, that is, no portfolio X satisfies (4) and (5). It is also
possible for a model to be feasible and yet have no mean-
variance efficient portfolios. In this case, if �X is feasible
with minimum VP and with expected return E, there is
another feasible portfolio X∗ with the same V and with
E∗ >E. This can occur if C is singular and the constraint
set unbounded. Below, we assume that the model is feasible
and has efficient portfolios.

Next, we summarize (without proof) certain properties
and formulas of efficient sets.2 The set of efficient EV com-
binations is piecewise parabolic. In general, there may be
more than one efficient portfolio X for a given efficient
EV combination. When the set of efficient portfolios is
unique—with only one feasible portfolio X for any given
efficient EV combination—the set of efficient portfolios is
piecewise linear. The formula for an efficient segment (of
the piecewise linear efficient set) is given below. When the

set of efficient portfolios is not unique there is nevertheless
a “complete, nonredundant” set of efficient portfolios that
satisfy the equations below. By “complete, nonredundant”
we mean a set of efficient portfolios with one and only
one X for each efficient EV combination. The CLA pro-
vides such a complete, nonredundant set of efficient portfo-
lios whether or not the set of efficient portfolios is unique.

The Lagrangian expression for the general model is

L= V /2+
m∑

k=1

�k

( n∑
j=1

akjXj

)
−�E

n∑
i=1

�iXi� (9)

Let

�=  L

 X
= �C A′ ��




X

�

−�E


 � (10)

where �= ��1� � � � � �m�
′. For the moment, to develop a def-

inition, arbitrarily select a nonempty subset of !1�2� � � � � n"
and designate this subset as the IN variables, and its com-
plement as the OUT variables. Let

M =
[
C A′

A O

]
(11)

and let MIN be the M matrix with the rows and columns
that correspond to OUT variables deleted. Similarly, let �IN

and XIN be the � and X vectors with OUT components
deleted, and 0IN be a zero vector of the same size as �IN.
If MIN is nonsingular, we say that the arbitrarily chosen IN
set has an associated critical line satisfying

Xi = 0 for i ∈OUT (12)

and

MIN

[
XIN

�

]
=
[

0IN

b

]
+
[
�IN

0

]
�E� (13)

Multiplying through by M−1
IN solves (13) for XIN and � as

linear functions of �E :[
XIN

�

]
= %IN +&IN�E� (14)

If we substitute (14) into (10), we find that the � vector is
also a linear function of �E :

�= 'IN + (IN�E� (15)

Conditions (13) imply

�i = 0 for i ∈ IN� (16)

In light of (12) and (16), if a point on the critical line also
satisfies

Xi � 0 for i ∈ IN� (17)

�i � 0 for i ∈OUT� (18)

�E > 0� (19)
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then the point is efficient, by the Kuhn-Tucker theorem. If
any point on the critical line is efficient, then there will be
an interval of that line (possibly open-ended) all of whose
points are efficient. We refer to such an interval as an effi-
cient segment.

Because there are 2n − 1 nonnull subsets of !1� � � � � n",
it is impractical to enumerate them all, determine which
have nonsingular MIN, among these determine which con-
tain efficient segments, then piece these together to form
a complete, nonredundant set of efficient portfolios. The
CLA produces such a set without searching among irrele-
vant IN sets.

The CLA proceeds as follows.3 It traces out the efficient
set from high to low �E . At a typical step, we have in hand
a critical line with an efficient segment, and with IN-set
INt; we also have in hand the corresponding MIN and M−1

IN .
We can then solve for %IN, &IN, 'IN, and (IN, from which
it is easy to determine which occurs first as �E is reduced:

an Xi ↓ 0 for i IN� (20)

an �i ↓ 0 for i OUT� (21)

or �E ↓ 0� (22)

In case �E ↓ 0 first, we have reached the efficient portfolio
with minimum feasible V , and the algorithm stops.4

If Xi ↓ 0 first, then i moves from IN to OUT on the
next (“adjacent”) efficient segment. It is shown that �i will
increase on this next segment. On the other hand, if �i ↓ 0
first, then i moves from OUT to IN in the new IN set,
INt+1, and Xi will increase on the new segment.5 If the
algorithm has not stopped, because �E ↓ 0 has not been
reached, the new M matrix, MIN�t+1�, is nonsingular. It is
obtained from the old by adding or deleting one column
and the corresponding row. This allows us to update M−1

relatively inexpensively, and use it to solve for %, &, ', (,
etc., as before. The algorithm ends, with �E ↓ 0, in a finite
number of iterations.6

4. Diagonizable Models of Covariance

Factor Models. In the introduction, we referred to
“fast algorithms” based on certain models of covariance.
In this section, we summarize such algorithms for the fac-
tor and scenario models and for models with historical
covariance matrices when there are more securities than
observations. In problems with a large number of securi-
ties, computation time may differ by orders of magnitude
between using a dense covariance matrix and using the
diagonal or nearly diagonal covariance matrices permitted
by the aforementioned models of covariance.

For the present, we are concerned with portfolios of long
positions, which we denote as

X� = [
X1� � � � �X*� � � � �Xn

]′
�

We write its constraints as

A�X� = b�� (23)

X�
� 0� (24)

The portfolio may include zero-variance “securities” such
as cash or dummy variables. We assume that

Vi > 0 for i ∈ �1� *��

Vi = 0 for i ∈ �*+ 1� n��
(25)

If * = n, then �*+ 1� n� is empty.
A factor model of covariance assumes that security

returns are related to each other because they are related to
common underlying factors. Specifically, it assumes that

ri = %i +
K∑

k=1

&ikfk + ui� i= 1� � � � � n� (26)

where K is the number of common factors, fk is the kth
common factor, and ui is an idiosyncratic term assumed
uncorrelated with fk, k= 1� � � � �K, and all uj for i �= j . In
matrix notation,

R= %+BF +U� (27)

where % = �%1� � � � �%n�
′, B = �&ik� is n × K, F =

�fi� � � � � fk�
′, and U = �u1� � � � � un�

′. From (27) and (1), we
see that

RP = %′X� + F ′B′X� +U ′X�� (28)

Because F and U are uncorrelated, the above implies

VP = �X��′BQfB
′X� + �X��′QuX

�� (29)

where Qf and Qu are the covariance matrices of F and U ,
respectively. By assumption, Qu is diagonal with ith diag-
onal term V �ui�. Qf is not necessarily diagonal.

Define K “fictitious” investments in terms of “real”
investments,

B′X� −



Xn+1
���

Xn+K


= 0� (30)

We let X�� = �X1� � � � �Xn+K�
′ and

A��X�� = b�� (31)

be constraints (23) with (30) appended. We may write
(29) as

VP = �X���′C��X��� (32)



Jacobs et al.: Portfolio Optimization with Factors, Scenarios, and Realistic Short Positions
590 Operations Research 53(4), pp. 586–599, © 2005 INFORMS

where

C�� =
[
Qu 0

0 Qf

]
�

The original problem may be restated as finding
EV-efficient X�� subject to (31) and (24) with portfolio
variance defined as in (32). The M-matrix now is

M�� =
[
C�� �A���′

A�� 0

]
� (33)

Because Xi � 0 is not required for the fictitious securi-
ties, i ∈ �n+1� n+K�, it is convenient to permit Xi < 0 for
these variables (rather than separate them into positive and
negative parts as in (8)). Then, for i > n, Xi is IN on all
critical lines. We refer to the portfolio selection model with
constraints (31) and covariance matrix (32) as the “diago-
nalized version” of the factor model. (Strictly speaking, we
mean “almost diagonalized” because Qf is not necessarily
diagonal.) It is assumed that all risky securities, i ∈ �1� *�,
have positive idiosyncratic risk:

V �ui� > 0� i ∈ �1� *�� (34)

Typically, * � n+K− *; therefore M�� is quite sparse
and well structured. This is the basis for fast CLAs for fac-
tor models.7 If Qf is known to be diagonal, the algorithm
can be further streamlined.

Scenario Models. A scenario model analyzed by
Markowitz and Perold (1981a, b) assumes that one of S
mutually exclusive scenarios will occur with probability Ps ,
s = 1� � � � � S. If scenario s occurs, then the return on the ith
security is

ri =�is + uis� (35)

where E�uis� = cov�uis� ujs� = 0 for i �= j . Let Vis =
E�u2

is � s�. The expected return E of the portfolio is still
given by (2), provided that the � in (2) are computed as
follows:

�i =
S∑

s=1

Ps�is� (36)

These �i can be computed in advance of the optimization
calculation. Let

Xn+s =
n∑

i=1

Xi��is −�i� ∀s ∈ �1� S�� (37)

This equals the expected value Es of the portfolio, given
that scenario s occurs, less portfolio grand mean E. The
variance of the portfolio is

VP = E�RP −EP�
2 =

S∑
s=1

PsE�RP −Es +Es −E�2

=
n+S∑
i=1

X2
i
�Vi� (38)

where

�Vi =
S∑

s=1

PsVis� i= 1� � � � � n�

�Vn+s = Ps� s = 1� � � � � S�

Thus, VP can be expressed as a positively weighted sum
of squares in the n original variables and S new, fictitious
variables that are linearly related to the original variables
by (37).

Apart from notation (e.g., using S for K and (37)
for (30)), the scenario model is formally the same as the
factor model with Qf diagonal. That is, the meanings of
the coefficients are different but, with change of notation,
the portfolio selection problem with a scenario model of
covariance has an M�� matrix as in (33), with diago-
nal Qf . We refer to the portfolio selection problem with
constraints (37) appended to the given constraints, and vari-
ance expressed as in (38), as the diagonalized version of
the scenario model (35).8

Historical Covariance Matrices. Consider the case in
which T historical periods (e.g., months or days) are used
to estimate covariances among n securities. Let

Xn+t =
n∑

i=1

Xi�rit −mi�� t = 1� � � � � T � (39)

where rit is the return on the ith security during period t,
and mi is the ith security’s historical average return:

mi =
1
T

T∑
t=1

rit�

The mi do not necessarily equal the estimated expected
return �1 in (2). Then, Xn+t is the difference between port-
folio return in the tth period and the portfolio’s average
return. Therefore, the historical variance of a portfolio is a
constant times

VP =
T∑

t=1

X2
n+t � (40)

This is a sum of squares in new, fictitious securities that are
linearly related to the old. Once again, the problem can be
expressed as a portfolio selection problem with M�� matrix
as in (33). In the present case, we have

Qu = 0� (41)

M�� is again sparse and well structured but, because
of (41), requires different handling than in the fast algo-
rithms for the factor and scenario models.9

We refer to the portfolio selection model with constraints
(39) appended and variance expressed as in (40) as the
diagonalized version of the historical covariance model. We
refer to the three models described in this section as “diag-
onalizable” models. For large problems, the above mod-
els afford a reduction in computation requirements roughly
proportional to the reduction in the number of nonzero
entries between M� and M��.



Jacobs et al.: Portfolio Optimization with Factors, Scenarios, and Realistic Short Positions
Operations Research 53(4), pp. 586–599, © 2005 INFORMS 591

5. Short Sales in Practice
Capital asset pricing models (CAPMs) frequently assume
that the investor chooses a portfolio subject only to the
constraint

n∑
i=1

Xi = 1� (42)

without constraint on the sign of Xi. Negative Xi are inter-
preted as short positions. In particular, (42) permits �x�
1−x�0� � � � �0� as feasible for all real x. For example, (42)
would permit an investor to deposit $1,000 with her broker,
short $1,000,000 of Stock A, and use the proceeds plus the
original deposit to purchase $1,001,000 of Stock B. This is
not how short positions work in fact.

No single constraint set applies to all long-short
investors. The portfolio analyst must model the specific
constraint set for the particular client. To illustrate what
this may involve, we outline a few real-world short-sale
constraints (see also Jacobs and Levy 2000).

To sell short for any customer, a broker must borrow the
stock to be sold, and actually sell it. The brokerage firm
may borrow the stock from itself, typically from customer
stock held “in street name” in margin accounts. Alter-
natively, the broker may borrow the stock from another
investor, typically a large institutional investor. Some inter-
mediary may facilitate the process of bringing together
demand and supply of stock-to-lend. Sometimes a lender
cannot be found for the desired stock. In this case, the
stock cannot be sold short. Furthermore, the lender retains
the right to call back the stock; if he does, and another
lender is not promptly available, the investor must cover
the short position (i.e., buy back the stock) and deliver it
to the lender.

The proceeds of a short sale are used as collateral for the
lender of the stock. In fact, if the stock is borrowed from
another investor, the broker must put up more than 100% of
the proceeds of the sale as collateral, usually about 105%.
(Note that this is required of the broker to protect the stock
lender, as opposed to the requirement on the short seller
discussed in the next paragraph.) The proceeds of the stock
sale are invested in “cash instruments” such as short-term
Treasury bills. The broker and the stock lender retain a por-
tion of the interest earned on the proceeds. A large institu-
tional investor that shorts stock typically receives a portion
of the interest (referred to as a “short rebate”). A small
retail customer who sells short typically receives no part of
the interest.

The short seller is subject to Regulation (Reg) T. Reg T
covers common stock, convertible bonds, and equity mutual
funds; securities such as U.S. Treasury bonds or bond funds
and municipal bonds or bond funds are exempt from Reg T.
Reg T requires that the sum of the long positions plus the
sum of the (absolute value of) short positions must not
exceed twice the equity in the account. If we normalize

so that “1” represents the equity in the account, then Reg T
requires

2n∑
i=1

Xi �H� (43)

where Xi represents a long position for i ∈ �1� n�, a short
position for i ∈ �n+ 1�2n�, and currently Reg T specifies
H = 2. This inequality, of course, can be converted to an
equality by introduction of a slack variable.

As a matter of policy, the broker or investor may set H
at a lower level. There may be additional constraints on the
choice of

X�� = [
X1� � � � �X2n

]′
� (44)

For example, some securities are hard to borrow. The bro-
ker may therefore limit the amount of the short position or
not permit short positions in the particular security.

Constraint (43) with H = 2 is referred to as a “50%
margin requirement” on both short and long positions. In
practice, the nature of this margin requirement is different
for short and long positions. In the case of long positions,
the customer may borrow as much as 50% of the value of
the position from the broker. In the case of a short posi-
tion, the customer does not borrow money from the broker;
the margin requirement is a collateral requirement. Further-
more, the Reg T requirements are for “initial margin”—the
equity required in the account to establish initial positions.
It does not constrain the value of the positions maintained
after they are established. However, there are “maintenance
margin” requirements imposed by securities exchanges and
by brokers. Consequently, one motive of the investor in set-
ting her or his own H in (43) is to reduce the probability
of needing additional cash for maintenance margin.10

Reg T can be circumvented in several ways. For exam-
ple, hedge funds often set up offshore accounts, which are
not subject to Reg T. Alternatively, a large hedge fund can
set up as a broker-dealer, with a “real” broker-dealer act-
ing as the “back office.” In this case, the hedge fund, as
broker-dealer, is subject to broker-dealer capital require-
ments rather than Reg T requirements. This permits much
more leverage than Reg T. In the extreme, the only con-
straint is what the broker imposes on the hedge fund’s
portfolio to assure that, in the case of unfavorable mar-
ket movements, the broker is secure. A hedge fund could
also circumvent Reg T by having a broker set up a pro-
prietary trading account of its own that is managed by the
fund. Gains and losses in the proprietary trading account
are transferred to the hedge fund via prearranged swap con-
tracts. The only constraint imposed by this arrangement is
the broker’s own capital requirements, plus whatever con-
straints the broker imposes.11

Also lying outside Reg T are certain arrangements that
allow the investor to use noncash collateral, including exist-
ing long positions, to collateralize the shares borrowed to
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sell short, freeing up the proceeds from short sales to be
used for further purchases and short sales. In all these cases,
the broker-dealer imposes its own requirements for its own
security. The portfolio analyst must model the situation as
she or he finds it.12

6. Modeling Short Sales
We assume that the choice of X�� is subject to some system
of linear constraints in nonnegative variables

A��X�� = b��� (45)

X��
� 0� (46)

Portfolio return is

RP =
n∑

i=1

riXi +
2n∑

i=n+1

�−ri−n�Xi + rc

2n∑
i=n+1

hi−nXi� (47)

The first term on the right of Equation (47) represents the
return contribution of the securities held long. The second
term represents the contribution of the securities sold short.
The third term represents the short rebate, where

hi � 1� i= 1� � � � � n� (48)

Usually, hi � 0, but this condition is sometimes violated for
hard to borrow stocks, and is not required for our results.13

rc is the return on “cash” or “collateral.” Cash is also a
risk-free security that can be held long, i.e., c ∈ �*+ 1� n�.
In particular, we assume that * < n.14 Let

R�� =



r̃1
���

r̃2n


=

[
R�

−R� +hrc

]
� (49)

��� = E�R���=
[

��

−�� +hrc

]
� (50)

The expected return and variance of the long-short portfo-
lio are

E = �����′X��� (51)

VP = �X���′C��X��� (52)

where

C�� =
[

C� −C�

−C� C�

]
� (53)

and where C� is the long-only covariance matrix.
If we assume a multifactor model with returns ri given

by (26) and (27), then (49) implies

R�� =
[

%
−%

]
+
[

B
−B

]
F +

[
U
−U

]
+
[

0n

h

]
rc� (54)

where 0n is an n-vector of zeros. Hence, the covariance
matrix of R�� is

C��� =
[

B
−B

]
Qf

[
B
−B

]′
+
[

Qu −Qu

−Qu Qu

]
� (55)

Thus, if we define

�X����′ = ��X��′� �X��′� �X��′�� (56)

where

X� = �X2n+1� � � � �X2n+K�
′

are portfolio betas, then X��� is chosen subject to con-
straints (46) and

A���X��� = b���� (57)

The latter are constraints (45) with

X� = �B�−B�X��

appended.
Define the vector

(=
[

B
−B

]′ [X�

X�

]
= B′X� −B′X�� (58)

The kth entries of the vectors B′X� and B′X� are the con-
tributions of the long and short portions of the portfolio,
respectively, to the kth “fictitious security.” Thus, ( is a vec-
tor of the differences between the contributions of the long
and short portions of the portfolio. Using Equations (55),
(58), and definitions, we obtain portfolio variance as

VP = (′Qf(+
[
X�

X�

]′ [
Qu −Qu

−Qu Qu

][
X�

X�

]
� (59)

Recalling that Qu is diagonal, this can be written as

VP = (′Qf(+
2n∑
i=1

X2
i Vi − 2

n∑
i=1

XiXn+iVi� (60)

7. Solution to Long-Short Model
Equation (60) is the same as the diagonalized form (32) of
the diagonalizable models of §4 except for the inclusion of
the last sum of cross-product terms. Fortunately, for certain
models the sum of cross products can be ignored. For these
models, a portfolio optimizer that assumes that variance is

V ′
P �X�= (TQf (+

2n∑
i=1

X2
i Vi (61)

instead of that given in Equation (60), will still produce a
correct mean-variance efficient frontier.
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Note that if

XiXn+i = 0� i= 1� � � � � n (62)

holds (i.e., the investor is not long and short the same secu-
rity), then VP in (60) equals V ′

P in (61). We shall refer to a
portfolio that satisfies (62) as trim; otherwise it is untrim.
We will refer to the portfolio selection model with E, VP ,
and constraints given by (51), (60), (57), and (46) as the
original model; and that with (60) replaced by (61) as
the modified model. In this section, we consider conditions
under which the efficient set for the modified model is an
efficient set for the original model.

Clearly, V ′
P �X� ≡ VP�X� if Vi = 0 for all i ∈ �1�2n�, as

is the case for the diagonalized historical model. We will
denote this simple but useful result as a theorem.

Theorem 1. An efficient set for the modified historical
model provides an efficient set for the original historical
model.

Proof. See the preceding paragraph. �

Theorem 1 makes no assumption concerning the con-
straint set or expected returns other than the background
assumptions that the model is feasible and has efficient
portfolios. The other diagonalizable models of §4 require a
further assumption to reach a similar conclusion. The fol-
lowing assumption is sufficient.

Property P. If in the original model X is a feasible port-
folio with XiXn+i > 0 for some specific i, then there is a
feasible portfolio Y with

Yi =Xi − 9i�

Yn+i =Xn+i − 9i� (63)

Yj =Xj� j �= i� n+ i� j ∈ �1� *�∪ �n+ 1� n+ *�

for 9i = min!Xi�Xn+i}. Also, Y has the same or greater
mean as X.

In other words, if X has a positive long and a positive
short position in the same security, it is feasible to subtract
the above 9i from both positions, keeping all other risky
securities unchanged, adjusting only zero-variance Xi, with-
out reducing portfolio expected return. Note that YiYn+i = 0.

While Property P is not necessarily true, it does hold for
a wide variety of constraint sets met in practice. Suppose,
for example, that choice of a long-short portfolio is subject
to any or all of the following constraints: (A) a Reg T type
of constraint as in (43), perhaps with H > 2 for an investor
not subject to Reg T; (B) upper bounds on individual long
or short positions; (C) the requirement that the value of
long positions be close to the value of short positions—
specifically,

: �

*∑
i=1

Xi −
*∑

i=1

Xn+i �−: (64)

for some given tolerance level : ;15 as well as the nonneg-
ativity requirement (46), and a budget constraint

*∑
i=1

Xi +Xc −Xb � 1� (65)

where Xc is a cash balance and Xb is an amount bor-
rowed. (Note that the sum in (65) is through *, i.e.,
it includes risky long positions only. Recall that, unlike
investors in CAPMs with (42) as their only constraint,
Reg T-constrained investors do not get to spend the pro-
ceeds from selling short, although they may share the
interest collected on these proceeds.) If X is any feasible
portfolio (i.e., meets each of the above constraints) with
XiXn+i > 0, then Y with

Yi =Xi − 9i�

Yn+i =Xi − 9i�

Yc =Xc + 9i� (66)

Yj =Xj for j ∈ {
�1� *�∪ �n+ 1� n+ *�

}\!i� n+ i"�

9i =min!Xi�Xn+i"

meets the constraints. When the constraints are written
as equalities, as in (7), then zero-variance slack variables
are adjusted to maintain the equalities. Also, from (47)
and (48),

EY =EX + 9i�1−hi�rc �EX� (67)

Thus, a constraint set consisting of (46), (65), and some
or all of (A), (B), and (C) does satisfy Property P. Note
that Property P only requires Y to be feasible, not neces-
sarily efficient; thus we need not be concerned, in checking
Property P that, say, Y might be improved by reducing Xb

rather than increasing Xc in case Xb > 0.
On the other hand, if there is an upper bound on the

holding of cash,

Xc � uc� (68)

then Property P may not be satisfied. If, for example, there
are no upper bounds on the other Xi, then

X1 = 1− uc�

Xn+1 = 1− uc�

Xc = uc�

Xi = 0 otherwise

(69)

is feasible, but X1 and Xn+1 cannot be reduced by adjusting
zero-variance variables, including Xc in (65), in the manner
required by Property P without violating (68).

Theorem 2. If Property P holds in the original model, then
for each efficient �E�VP � combination there is one and only
one trim portfolio Y with the same �E�VP �.
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(There may also be untrim efficient portfolios with this
�E�VP �.)

Proof. Because �E�VP � is feasible, there is a portfolio X
that provides it. If X is untrim, successive transformations
(63) for each i in turn with XiXn+i > 0 yields a trim, feasi-
ble Y with the same or greater E than X and, from Equa-
tions (58) and (59), the same VP . If Y has greater E, then
X could not be efficient, whereas if Y has the same E as
X, then Y too is efficient. Thus, for any efficient �E�VP �
combination, there exists a trim feasible Y that provides it.

To show that Y is unique, let us suppose that another
trim feasible (therefore efficient) portfolio Z supplies
�E�VP �. Let

W = =Y + �1− =�Z� (70)

If we show that VP as a function of = is strictly convex, then
�1/2�Y + �1/2�Z is feasible (because the constraint set is
convex), has the same E (because E is linear), and less VP

than Y or Z, contradicting the assumption that Y and Z are
efficient. To see that VP is a strictly convex function of =,
first confirm that the first term on the right-hand side of
(60) is constant or a convex function of = (because Qf is
positive semidefinite and ( is linear in =�. Next, note that
the last two terms of Equation (60) may be obtained by
substituting �Xi = Xi −Xn+i into

∑n
i=1 Vi

�X2
i . As a function

of =, this is a sum of terms that are either constant (i.e.,
for those i with �Yi = �Zi, which implies Yi = Zi because Y
and Z are trim) or strictly convex. It follows that VP is a
strictly convex function of = provided Y �=Z. �

From (60) and (61), we see that

V ′
P −VP = 2

n∑
i=1

XiXn+iVi� (71)

Thus, V ′
P = VP for trim portfolios, and V ′

P > VP for untrim
ones.

Theorem 3. If Property P holds in the original model, then
the modified model has the same set of efficient �E�VP �
combinations as does the original model. Also, it has a
unique set of efficient portfolios (one for each efficient
�E�VP � combination) that is the same as the unique set of
trim efficient portfolios in the original model.

Proof. First, we show that all efficient �E�VP � combina-
tions in the original model, and all trim efficient portfolios
in the original model, are efficient �E�V ′

P � combinations
and portfolios for the modified model. Then, we show that
no additional portfolios or �E�V ′

P � combinations are effi-
cient for the latter model. Because VP = V ′

P for trim portfo-
lios, and each efficient �E�VP � combination in the original
model can be supplied by a trim portfolio X, each efficient
�E�VP � combination of the original model is feasible in
the modified model. It will also be efficient in the mod-
ified model unless some other feasible portfolio Y domi-
nates it in that model (i.e., has greater E for the same or

less V ′
P , or less V ′

P for the same or greater E). Because the
models have the same feasible sets and expected returns,
and because VP�Y � � V ′

P �Y �, V ′
P �X� = VP�X�, if Y dom-

inated X in the modified model (e.g., with E�Y � � E�X�
and V ′

P �Y � < V ′
P �X��, then it would also dominate it in the

original model, contradicting the hypothesis that X is effi-
cient in the original model. Thus, all trim portfolios that are
efficient in the original model are efficient in the modified
model.

We now show that no other portfolios are efficient in
the modified model. If the constraint set is bounded, there-
fore compact as well as closed, then the efficient �E�VP �
combinations of the original model span a closed interval
�E� �E� of expected returns, where �E is the maximum fea-
sible expected return and E is the expected return of the
efficient portfolio with minimum VP . According to Theo-
rem 2, if X is a trim, efficient portfolio and Y is another
efficient portfolio with the same �E�VP �, then Y is untrim.
Therefore, (71) implies V ′

P �Y � > VP�Y �= V ′
P �X�. Thus, Y

is not efficient in the modified model. This, plus the fact
that V ′

P = VP for trim portfolios, and the uniqueness state-
ment in Theorem 2, implies that the efficient set for the
modified model is unique for E ∈ �E� �E�. Nor can the modi-
fied model have an efficient portfolio with E outside �E� �E�,
for then the modified model will either have a feasible port-
folio with greater E than �E, which is impossible because
the two models have the same feasible sets and expected
returns, or have smaller V than the minimum feasible V in
the original model, which is impossible because V ′

P � VP .
If E is not bounded above, then the preceding argument

applies except that it is unnecessary to check for an efficient
portfolio in the modified model with E > �E. �

Theorem 3 assures us that we can naively use a factor
or scenario portfolio optimizer, ignoring the negative cor-
relation between ui and un+i, and get a correct answer to
the long-short portfolio selection problem when Property P
holds. This is not necessarily the case if Property P does not
hold. For example, consider any diagonalized model with
a Reg T constraint (with H = 2), a budget constraint (65),
and an upper bound �uc < 1�0� on cash. Assume that Vi > 0
for all i ∈ �1� *�. In the original model, consider the port-
folio with

X1 =Xn+1 = 1� Xi = 0 otherwise�

This portfolio is feasible and has zero variance. Thus,
zero variance is feasible; therefore, some portfolio (not
necessarily the above portfolio) has zero variance and is
efficient. However, the modified version of this model has
no feasible zero-variance portfolios: The upper bound on
cash implies that Xi > 0 for some i ∈ �1� *�, which implies
V ′
P > 0, because cov�ri� rj� = 0 for risky securities in the

modified model. Thus, absent some assumption such as
Property P, it is possible that an efficient set for the mod-
ified model may not be an efficient set for the original
model.
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8. Example
Tables 1 through 8 illustrate the content and purpose of
the theorems of the preceding section. We consider a three-
security, one-factor model subject only to Reg T, the budget
constraint, and nonnegativity constraints. In this case, (26)
may be written as

ri = %i +&if + ui� i= 1�2�3� (72)

Table 1 presents inputs to such a model for three hypo-
thetical securities. In all the tables, long positions in the
three securities are labeled 1L, 2L, and 3L. Table 1 shows
for each of these long positions, the expected return �i,
beta &i, idiosyncratic variance Vi = var�ui�, and rebate frac-
tion hi. The latter is needed to compute the expected return
of the corresponding short position. Table 1 also shows the
lending rate, the borrowing rate, and the variance of the
underlying factor f .

The betas of the securities, their idiosyncratic variances,
and the variance of the underlying factor could be used to
compute the covariances among the long positions accord-
ing to the formulas

cov�ri� rj�= &i&jV �f �� i �= j� (73a)

V �ri�= &2
i V �f �+V �ui�� i= 1�2�3� (73b)

The result of this calculation for the present example is
shown in Table 2.

As Sharpe (1963) explains for a long-only portfolio anal-
ysis, the covariance matrix for a one-factor model can be
transformed into a sum of squares by introducing a new
variable constrained to be the portfolio beta, as in (30).
Table 3 contains the covariance matrix for this four-security
version of the three-security single-factor model. The algo-
rithm presented in Sharpe (1963) takes advantage of the
fact that the covariance matrix is diagonal, with nonzero
entries on the diagonal, rather than a dense arbitrary covari-
ance matrix (i.e., an arbitrary positive, semidefinite matrix)

Table 1. Illustrative three-security one-factor model.

Expected Idiosyncratic Rebate
Security return Beta variance fraction
i ��i� &�i� V �i� h�i�

1L 0.10 0.80 0.0768 0.5
2L 0.12 1.00 0.1200 0.5
3L 0.16 1.25 0.1875 0.5
Lend 0.03 0.00 0.0000 NA
Borrow 0.05 0.00 0.0000 NA

Variance of factor 0.0400

Notes. This table shows inputs to a three-security, one-factor long-
short model. These consist of the expected return, beta against the
factor, and idiosyncratic variance of each long position. Also needed
are the rebate fraction of each security (for computing expected
returns of short positions), the rates at which the investor can borrow
and lend, and the variance of the underlying factor.

Table 2. Covariances among long positions.

Security 1L 2L 3L

1L 0.1024 0.0320 0.0400
2L 0.0320 0.1600 0.0500
3L 0.0400 0.0500 0.2500

Notes. This table shows covariances among long posi-
tions, computed from their betas, idiosyncratic variances,
and the variance of the underlying factor.

as the general critical line algorithm permits. Sharpe’s diag-
onalized version of the n-security one-factor model is fre-
quently referred to as the diagonal model.

The advantage of thus diagonalizing the covariance
matrix increases with the number of securities in the port-
folio analysis. Column 2 of Table 4 presents the number of
input coefficients required by the diagonal model of covari-
ance: namely n betas, n idiosyncratic variances, and one
factor f variance. The third column of Table 4 presents
the number of unique covariances needed by a compu-
tation expecting an arbitrary covariance matrix, namely
n�n+ 1�/2. Specifically, with three securities there are
actually more coefficients in the diagonal model than in the
nondiagonalized version. With 5,000 securities, the diago-
nal model works with about 10,000 coefficients, whereas
the 5,000-by-5,000 covariance matrix of the general model
has over 12 million unique covariances (counting �ij = �ji

as one covariance). Both versions of the model also need
n expected returns.

Both versions of the model will go through the same
number of iterations and come out with the same efficient
frontier. The work per iteration depends on how many secu-
rities are IN as well as the total number of securities. For
moderate to large-size analyses, much less work is required
by the diagonal model per iteration.16

Table 5 presents the expected returns, betas, and idiosyn-
cratic variances for both the long and short securities
corresponding to the long securities in Table 1. Short posi-
tions are labeled 1S, 2S, 3S. The expected returns for the
short positions are computed according to Equation (50).
The betas of the short position are the negative of those
for the long position, whereas the idiosyncratic variances
are the same for the short position as for the corresponding
long position.

Table 3. Covariances when dummy security is
included.

Security 1L 2L 3L PB

1L 0�0768 0 0 0
2L 0 0�1200 0 0
3L 0 0 0�1875 0
PB 0 0 0 0�0400

Notes. In a model with long positions only, the introduction of “port-
folio beta” as a fourth (dummy) “security” diagonalizes the covari-
ance matrix. An added equation is needed to constrain PB to equal
portfolio beta.
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Table 4. Number of unique coefficients required by
model of covariance.

Number of With dummy Without dummy
securities security security

3 7 6
20 41 210

100 201 5�050
500 1�001 125�250

1,000 2�001 500�500
3,000 6�001 4�501�500
5,000 10�001 12�502�500

Notes. This table shows the number of coefficients needed to
characterize the covariance structure when the dummy variable of
Table 3 is or is not added to the model. Since cov�i� j� = cov�j� i�
these are counted only once.

The covariances among long and short positions, pre-
sented in Table 6, are derived from Table 2 using Equa-
tion (53). We could compute an efficient frontier for the
short-long model using the expected returns in Table 5, and
the covariance matrix in Table 6, using a general portfo-
lio analysis program that permits an arbitrary covariance
matrix. If we perform the Sharpe (1963) trick of expressing
return as a linear function of amount invested in the factor,
plus amounts invested in the idiosyncratic terms as in our
Equations (54) and (57), then the covariance matrix for the
long-short model is as presented in Table 7. Note that the
covariance matrix is no longer diagonalized because, for
example, the 1L idiosyncratic term has a −1�0 correlation
with 1S.

If we present the data in Table 5 to the Sharpe (1963)
algorithm, it will assume that the covariance matrix is in
fact diagonal, such as that in Table 8. Theorem 3 assures us

Table 5. Illustrative three-security one-factor model
with long (L) and short (S) positions.

Expected Idiosyncratic
Security return Beta variance

i ��i� &�i� V �i�

1L 0�100 0�80 0�0768
2L 0�120 1�00 0�1200
3L 0�160 1�25 0�1875
1S −0�085 −0�80 0�0768
2S −0�105 −1�00 0�1200
3S −0�145 −1�25 0�1875
Lend 0�030 0�00 0�0000
Borrow 0�050 0�00 0�0000

Variance of factor 0.0400

Notes. The table shows properties of a three-security one-factor
long-short model, derived from Table 1. Here the expected returns
of the short positions are the negative of those of the correspond-
ing long positions, plus short rebate interest on the proceeds. The
betas of the short positions are the negative of the long positions;
the idiosyncratic variances are the same as those of the long posi-
tions. Not noted in the table is the fact that the covariances between
the idiosyncratic terms of nS and nL are not zero.

Table 6. Covariances among long and short positions.

Security 1L 2L 3L 1S 2S 3S

1L 0�1024 0�0320 0�0400 −0�1024 −0�0320 −0�0400
2L 0�0320 0�1600 0�0500 −0�0320 −0�1600 −0�0500
3L 0�0400 0�0500 0�2500 −0�0400 −0�0500 −0�2500

1S −0�1024 −0�0320 −0�0400 0�1024 0�0320 0�0400
2S −0�0320 −0�1600 −0�0500 0�0320 0�1600 0�0500
3S −0�0400 −0�0500 −0�2500 0�0400 0�0500 0�2500

Notes. The table shows covariances among short and long posi-
tions. These entries are of the same magnitude as the long-only
covariances in Table 2, with the same sign in case of long-long or
short-short covariances, and opposite sign in case of long-short or
short-long covariances.

that the efficient frontier computed assuming the diagonal
covariance matrix in Table 8 is the same as the efficient
frontier computed using the correct covariance matrix in
Table 7. It also assures us that, for any number of securi-
ties, we get the correct result if we ignore the correlations
among the idiosyncratic terms for a many-factor model,
scenario model, or a mixed factor and scenario model. It
further assures us that the efficient frontier is correctly com-
puted if additional constraints are imposed on the choice
of portfolio, provided that the constraint set satisfies Prop-
erty P. In particular, we may present the requisite parame-
ters to the Markowitz-Perold (1981a, b) algorithm for the
scenario model or mixed-scenario models, ignoring the cor-
relation between the short and long idiosyncratic terms, for
any system of constraints that satisfies Property P.

In the case of the n-security one-factor model, the advan-
tage of using the diagonal model (as permitted by The-
orem 3) rather than a general model is again given by
Table 4 and Endnote 13, except that now an n-security
long-short model has 2n “securities.” For example, if there
are 500 securities in the universe, then the diagonal model
will be told that there are 1,001 securities whose covari-
ance structure is described by 2,001 coefficients, whereas
the general model will require 500,500 unique (arbitrary,
as far as it knows) covariances.

9. Summary
CAPMs frequently assume, in effect, that an investor can
sell a security short without limit and invest the proceeds
of the short sale in some other stock. In fact, this is not the
case. This paper describes some actual short-sale arrange-
ments. However, short-sale requirements vary from time to
time, broker to broker, and investor to investor. Thus, the
portfolio analyst must model the sale requirements of the
specific client as she or he finds them.

The CLA traces out a piecewise linear set of efficient
portfolios subject to any finite system of linear equality
or inequality constraints, for any covariance matrix and
expected return vector. Because the covariance matrix is
arbitrary, the CLA can trace out efficient sets for long-short
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Table 7. Covariances when dummy security is included.

Security 1L 2L 3L 1S 2S 3S PB

1L 0�0768 0 0 −0�0768 0 0 0
2L 0 0�1200 0 0 −0�1200 0 0
3L 0 0 0�1875 0 0 −0�1875 0

1S −0�0768 0 0 0�0768 0 0 0
2S 0 −0�1200 0 0 0�1200 0 0
3S 0 0 −0�1875 0 0 0�1875 0

PB 0 0 0 0 0 0 0�0400

Notes. Above are the covariances among long, short, and the dummy security, PB, when portfolio
beta is introduced as a seventh dummy security. An equation is added to constrain PB to be portfolio
beta. Unlike the long-only case in Table 3, the covariance matrix is no longer diagonal.

portfolio selection problems provided that the constraints
on choice of portfolio are linear equalities or weak inequal-
ities. Examples of such constraints include a budget con-
straint, the Reg T “margin requirement constraint,” upper
bounds on long or short positions in individual or groups
of assets, or the requirement that the sum (or a weighted
sum) of long positions not differ “too much” from the sum
(or the weighted sum) of short positions.

While the CLA may be applied to an arbitrary covariance
matrix, it is especially fast for models in which covariances
are implied by a factor or scenario model. In this case,
an equivalent model can be written, including new “ficti-
tious” securities whose magnitudes are linearly related to
the magnitudes of the “real” securities, so that the covari-
ance matrix becomes diagonal or almost so. Special pro-
grams exist to exploit the resultant sparse, well-structured
efficient-set equations.

A portfolio selection problem in which securities can be
held short or long can be modeled as a 2n-security problem,
in which a first n represents long positions, and another n
short positions, and all 2n are required to have nonnega-
tive values. Even if long positions in n securities satisfy the
assumptions of the factor or scenario model, the 2n-variable
long-short model does not satisfy these same assump-
tions, because idiosyncratic terms are not uncorrelated.

Table 8. Covariances based on Theorem 3.

Security 1L 2L 3L 1S 2S 3S PB

1L 0�0768 0 0 0 0 0 0
2L 0 0�1200 0 0 0 0 0
3L 0 0 0�1875 0 0 0 0

1S 0 0 0 0�0768 0 0 0
2S 0 0 0 0 0�1200 0 0
3S 0 0 0 0 0 0�1875 0

PB 0 0 0 0 0 0 0�0400

Notes. If the data in Table 5 are presented to a standard factor model portfolio optimizer, the program
will assume that the model has the covariance structure in this table, with a diagonal covariance
matrix, rather than the correct one, that in Table 7. Theorem 3 assures us that the optimizer will
nevertheless compute the efficient frontier correctly. Theorem 3 further assures us that this is so for
a many-factor model, a scenario model, or a mixed factor-scenario model of covariance; and remains
true for any system of linear equality or (weak) inequality constraints that satisfy Property P.

Nevertheless, if the information for the 2n variables is
fed into a factor or scenario program, a correct answer is
computed—provided that a certain condition (“Property P”)
holds.

Property P essentially requires that if a portfolio with
short and long positions in the same stock is feasible, then
it is also feasible to reduce both positions, keeping the hold-
ings of all other risky stocks the same; and this reduction
in both the short and long positions in the same stock does
not decrease the expected return of the portfolio. When
this condition is met, then the 2n-variable version of the
long-short problem can be run on the appropriate factor or
scenario model program. The correct answer is produced
despite the violation of the assumption that the idiosyn-
cratic terms are uncorrelated.

A fast CLA also exists for the situation in which histor-
ical covariances are used, but there are many more securi-
ties than time periods. This algorithm produces the correct
answer when applied to the 2n-variable version of the long-
short problem, whether or not Property P holds.

The speed-up in computation that results from the use
of “diagonalized” versions of factor, scenario, or histori-
cal models is approximately equal to the ratio of nonzero
coefficients in the equations of the two models. For large
problems, this timesaving can be considerable.
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Endnotes
1. The results reported in this paper were first circulated in
a Jacobs Levy Equity Management working paper (Jacobs
et al. 2001).
2. For proofs and further details, see Markowitz (1959),
Appendix A, Perold (1984), Markowitz (1987), or
Markowitz and Todd (2000).
3. See Markowitz and Todd (2000), Chapter 8, for how to
get a first critical line.
4. If C is singular, there may be more than one portfolio
with minimum feasible V . Because the V -minimizing port-
folios may have different Es, they may not all be efficient,
but it is shown that the portfolio reached by the CLA when
�E ↓ 0 is efficient as well as V -minimizing.
5. See Markowitz and Todd (2000), Chapter 9, for what to
do in case of ties.
6. Note that the CLA as presented in Markowitz (1956) is
an example of a linear complementary algorithm as defined
in Wolfe (1959).
7. See Sharpe (1963) in particular, and Markowitz and
Perold (1981b) in general, for details.
8. For models that combine both scenarios and factors, see
Markowitz and Perold (1981a, b).
9. For details, see Markowitz et al. (1992).
10. See Fortune (2000) for details on initial and main-
tenance margin requirements for long and short posi-
tions on exempt and nonexempt securities. Also see www.
federalreserve.gov/regulations, 12 CFR 220, Credit by Bro-
kers and Dealers (Regulation T). See Jacobs and Levy
(1993) on margin requirements and cash needed for
liquidity.

Equation (43) can also be written as

2n∑
i=1

0�5Xi � 1� (10.1)

reflecting a 50% margin on short and long positions. Actu-
ally, the Reg T initial short margin requirement is stated
as 150%—of which 100% out of the 150% is supplied
by the proceeds of the sale of the borrowed stock. Con-
straint (10.1) is a special case of

2n∑
i=1

miXi � 1� (10.2)

where mi here represents the net (after proceeds, where
applicable) margin requirement of the ith position. Con-
straint (10.2) is more general than (43) or (10.1) in that it
permits, in particular, (a) a net short margin requirement
that differs from the long margin requirement, and (b) secu-
rities that are exempt from Reg T requirements. We use
(43) in examples, but Theorems 1, 2, and 3 apply to any
system of constraints (4) and (5) with properties specified
in theorems.
11. Rule 15c3-1 of the Securities Exchange Act of 1934
governs capital requirements for broker-dealers, including

the provision that indebtedness cannot exceed 1,500% of
net capital (800% for 12 months after commencing business
as a broker or dealer).
12. Noncash collateral typically consists of letters of credit
or securities. It is usually 100% to 105% of the amount
borrowed. The gains and losses on the collateral belong
to the borrower, and the lender is generally paid a fee.
The collateral is marked to market and augmented by the
borrower if necessary.
13. Usually hi < 1. However, the case of hi = 1 is con-
ceivable, and is covered by our theorems. Large institu-
tional investors often perform mean-variance analysis at an
asset class level and then implement the asset class alloca-
tions using either index funds or using internal or external
fund managers. If, say, an internal market neutral fund bor-
rows shares from, say, an internal large-cap or small-cap
fund, the allocation of interest on the proceeds between
borrowing fund and lending fund is arbitrary. The institu-
tion’s policy might allocate all the interest to the borrowing
fund, because the institution’s policy might prohibit exter-
nal stock lending, so that the particular interest income
would not exist except for the internal market neutral fund’s
activities.

If no zero-variance variable is ever held short, we may
write (47) as

RP =
n∑

i=1

riXi +
n+*∑

i=n+1

�−ri−n�Xi + rc

n+*∑
i=n+1

hi−nXi� (13.1)

Alternatively, we can leave it as is in (47) and assume that
(45) contains equations of the form

Xn+i = 0 (13.2)

for i ∈ �* + 1� n�. Generally, if a security cannot be sold
short (e.g., because it cannot be borrowed), then this can
be represented either by including a constraint of the
form �13�2� or by omitting n + i from the analysis. The
latter approach is advisable in practice; the former is nota-
tionally convenient here.
14. Equation (47) does not include tax considerations,
and therefore would be applicable to tax-exempt organiza-
tions such as university endowments and corporate pension
plans.
15. Jacobs et al. (1998, 1999) address the conditions
under which optimal portfolios that are constrained to hold
roughly equal amounts in long and short positions are
equivalent to optimal portfolios without this constraint. In
practice, long-short portfolios are often managed in this
“market-neutral” fashion.
16. If nI securities are IN, then the Sharpe (1963) algo-
rithm requires a few more than 3n + 7nI multiplications
and divisions plus 3n+ 5nI additions, whereas the general
algorithm requires 2nIn+5n+2n2

I −nI multiplications and
divisions, and 2nIn + 3n + 2n2

I − 2nI additions. Thus, if
n= 1,000 and nI = 10, as at the high end of the frontier,
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or nI = 100 as might occur at the low end of the frontier,
then the diagonal model requires 3,070 or 3,700 multipli-
cations and divisions for the iteration, whereas the general
algorithm requires 25,190 or 269,900.
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