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We have proposed that portfolio 
theory and mean–variance 
optimization (Markowitz 
[1952, 1959]) be augmented to 

incorporate investor aversion to leverage, and 
we have shown that mean–variance-leverage 
optimization creates a three-dimensional sur-
face of optimal portfolios ( Jacobs and Levy 
[2012, 2013]).

Conventional mean–variance optimiza-
tion determines optimal security weights by 
considering a portfolio’s expected return and 
variance of portfolio return. To the extent 
that leverage increases a portfolio’s volatility 
(the square root of variance), mean–variance 
optimization captures some of the risk associ-
ated with leverage.1 But it does not consider 
other components of risk that are unique to 
using leverage. These include the risks and 
costs of margin calls, which can force bor-
rowers to liquidate securities at adverse prices 
due to illiquidity, losses exceeding the capital 
invested, and the possibility of bankruptcy.2

Mean–variance analysis results in 
optimal unleveraged (long-only) portfolios 
for investors who are not able to tolerate any 
leverage. But for investors who use leverage, 
mean–variance analysis can result in optimal 
portfolios that are highly leveraged. This is 
because mean–variance optimization implic-
itly assumes that the investor has an infinite 
tolerance for, or (stated differently) no aversion 
to, the unique risks of leverage.

In practice, however, investors are leverage 
averse. For example, if offered a choice between 
a portfolio with a particular expected return 
and variance without leverage and another port-
folio that offers the same expected return and 
variance with leverage, most investors would 
prefer the portfolio without leverage. The 
conventional mean–variance utility function 
cannot distinguish between these two portfo-
lios, because it does not account for an impor-
tant aspect of investors’ behavior: investors’ 
aversion to the unique risks of leverage.

Investors who use leverage usually limit 
it, choosing a leverage level and imposing 
it on the portfolio with a constraint of the 
type described in Markowitz [1959]. Jacobs 
and Levy [2012] suggested determining the 
optimal leverage level by using a utility func-
tion that includes an explicit leverage- tolerance 
term, in addition to the traditional volatility-
tolerance term.3 That article provided one 
way to specify the leverage-tolerance term 
and illustrated optimal portfolio leverage 
levels when the utility function includes both 
volatility and leverage aversion.

In this article, we provide an alternative 
specification of the leverage-tolerance term, 
which may better capture the unique risks 
of leverage. We introduce mean–variance-
leverage eff icient frontiers, display them 
in the familiar two-dimensional form of 
mean–variance analysis, and compare them 
with conventional mean–variance efficient 
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frontiers. We also develop the concept of a mean–vari-
ance-leverage efficient region, bounded by a range of 
volatility tolerance and leverage tolerance. An analysis 
of the mean–variance-leverage efficient frontiers and the 
efficient region shows that leverage aversion can have a 
large effect on portfolio choice.

SPECIFYING THE LEVERAGE-AVERSION 
TERM

The leverage-aversion term that augments a mean-
variance utility function can be specified in different 
ways. Jacobs and Levy [2012] suggested the following:
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where α
P
 is the portfolio’s expected active return relative 

to benchmark, σP
2 is the variance of the portfolio’s active 

return, Λ is the portfolio’s leverage, and c is a constant 
defined in Equation (3).4 With this specification, risk toler-
ance essentially changes from a one-dimensional attribute 
(as in mean–variance optimization) to a two-dimensional 
attribute, with the first dimension being the traditional risk 
tolerance, renamed as volatility tolerance τ

V 
, and the second 

dimension being leverage tolerance, τ
L
. We used a squared 

term for leverage so that both risk components would have 
similar functional forms. We define leverage as
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where h
i
 is the portfolio holding weight of security i for 

each of the N securities in the selection universe.5

To investigate this utility function, we determined 
illustrative ranges for the tolerances. As one reference 
point, a value of τ

V
 = 0 corresponds to an investor who 

is completely intolerant of active volatility risk. Such an 
investor would choose an index fund. As another reference 
point, a value of τ

V
 ≈ 1 causes quadratic utility of return to 

be equivalent to log-utility of wealth, a utility function 
often used in the finance literature (Levy and Markowitz 
[1979]). Thus, we chose τ

V
 ∈ [0,2]. For illustrative pur-

poses, we chose τ
L
 to span the same range as τ

V 
.

We selected a constant c that would result in the 
two risk terms (volatility risk, σP

2, and leverage risk, cΛ2) 
having similar orders of magnitude. In particular, c was 

chosen to be the cross-sectional average of the variances 
of the securities’ active returns. That is,
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where ω i
2 is the variance of the active return of security i. 

Because portfolios in practice generally have leverage 
levels ranging from 0 to about 2 (very highly leveraged 
portfolios are relatively few in number, but can be large 
in asset size), the product cΛ2 should be of a similar order 
of magnitude to σP

2, so that similar values of τ
V
 and τ

L
 

lead to similar levels of disutility.
Using the constant c to specify the leverage-tolerance 

term has a certain intuitive appeal. In addition to resulting 
in similar orders of magnitude for the volatility and leverage 
terms, using active returns in computing c is congruent with 
using active returns in computing a portfolio’s expected 
active return and variance. Moreover, from an implementa-
tion perspective, the use of a constant means that the utility 
function can, if desired, be restated as a quadratic optimi-
zation problem, which is advantageous because quadratic 
solvers are readily available.

However, the unique risks of leverage relate more 
to a portfolio’s total volatility than to the volatility of 
its active returns. That is, the risk that portfolio losses 
will trigger a margin call or exceed the capital invested 
depends on the portfolio’s total volatility. Furthermore, 
this leverage dimension of risk will not be constant; 
rather, it will vary across different portfolios having dif-
ferent volatilities.

SPECIFICATION OF THE 
LEVERAGE-AVERSION TERM USING 
PORTFOLIO TOTAL VOLATILITY

Here we introduce another possible specification 
of an augmented mean–variance utility function that 
includes a leverage-aversion term:
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where σT
2  is the variance of the leveraged portfolio’s total 

return. This leverage-aversion term assumes that the 
risks of leverage rise with the product of the variance 
of the leveraged portfolio’s total return and the square 
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of the portfolio’s leverage. This specification may better 
capture the portfolio’s risk of margin calls and forced 
liquidations.

If α
i
 is the expected active return of security i, b

i
 

is the weight of security i in the benchmark, x
i
 is the 

active weight of security i (and by definition x
i
 = h

i
 − 

b
i 
), σ

ij
 is the covariance between the active returns of 

securities i and j, and q
ij
 is the covariance between the 

total returns of securities i and j, then Equation (4) can 
be written as
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Using Equation (2), and because h
i
 = b

i
 + x

i
, Equa-

tion (5) becomes:
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Equation (6) is the utility function to be maximized. 
In practice, the utility function in Equation (6) is more 
difficult to optimize than that in Equation (1), because the 
leverage-risk term requires powers up to and including 
the fourth order in the x

i
 terms. We will show a method to 

solve for optimal portfolios using this utility function.

OPTIMAL PORTFOLIOS WITH LEVERAGE 
AVERSION BASED ON PORTFOLIO TOTAL 
VOLATILITY

To examine the effects of leverage aversion using 
this new specif ication, we used the enhanced active 
equity (EAE) portfolio structure, as in Jacobs and Levy 
[2012]. An EAE portfolio has 100% exposure to an 
underlying market benchmark, while permitting short 
sales equal to some percentage of capital and use of the 
short-sale proceeds to buy additional long positions. 
For expository purposes, we assume the strategy is self-
financing and entails no financing costs.6 An enhanced 
active 130–30 portfolio, for instance, has leverage of 
60% and an enhancement of 30%.

We found EAE portfolios that maximize the utility 
function represented by Equation (6) for a range of vol-
atility and leverage tolerance pairs (τ

V
, τ

L
), subject to 

standard constraints. The standard constraint set for an 
EAE portfolio is
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Equation (7) says the sum of security active under-
weights relative to benchmark (including short positions) 
equals the sum of security active overweights—the full 
investment constraint. Equation (8) says that the sum of 
the products of security active weights and security betas 
equals zero; that is, the net (long–short) portfolio beta 
equals the benchmark beta. In addition to these standard 
constraints, we constrained each security’s active weight 
to be between −10% and +10%.

We maximized the utility function in Equation (6) 
by using a fixed-point iteration. To explain this proce-
dure, we rewrite Equation (6) as the following set of two 
equations:
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We chose an initial estimate of σT
2 and used this as 

a constant to maximize the utility function in Equation 
Set (9). This maximization provided estimates of the x

i
s, 

which we used to compute a new estimate of σT
2 using 

the second equation in Equation Set (9). With the new 
estimate of σT

2, we repeated the optimization to find new 
estimates of the x

i
s. We repeated this iteration until suc-

cessive estimates of σT
2 differed by a de minimis amount.

Using the same data (for stocks in the S&P 100 
Index) and estimation procedures used in Jacobs and 
Levy [2012], and the same range of leverage and vola-
tility tolerances, we derived the enhancement surface for 
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the optimal levels of portfolio leverage using the new 
specification of leverage aversion.7 The optimal levels 
of enhancement were slightly higher than, but substan-
tially similar to, those of the earlier specification. The 
appendix explains the reasons for the small differences 
in the optimal levels of enhancement between the two 
specifications.

EFFICIENT FRONTIERS WITH 
AND WITHOUT LEVERAGE AVERSION

Exhibit 1 illustrates, in a familiar two-dimensional 
volatility risk–return framework, how considering leverage 
aversion can affect the investor’s choice of an optimal 
portfolio. We plot efficient frontiers (the set of optimal 

E X H I B I T  1
Optimal Leverage for Various Leverage-Tolerance (τL) Cases
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portfolios) for four cases. We compute the frontiers as 
discussed in the previous section, with the fourth frontier 
computed without the 10% constraint on active security 
weights. The portfolios on these frontiers offer the highest 
expected active return at each given level of volatility 
(whether measured as variance or as standard deviation of 
active return). We map out the frontier in each separate 
chart by varying the level of volatility tolerance from 0 to 
2 while holding the level of leverage tolerance constant.

In all the cases illustrated in Exhibit 1, the efficient 
frontier begins at the origin, which corresponds to the 
optimal portfolio when volatility tolerance is 0. In such 
a situation, the investor cannot tolerate any active vola-
tility, so the optimal portfolio is an index fund, which 
provides zero standard deviation of active return and 
thus zero expected active return. As the investor’s vola-
tility tolerance increases, the optimal portfolio moves 
out along the efficient frontier.

The first panel of the exhibit illustrates the effi-
cient frontier when leverage tolerance is 0, meaning the 
investor is unwilling to use leverage and hence holds a 
long-only portfolio. As the investor’s tolerance for vola-
tility increases, the optimal portfolio moves out along 
the frontier, taking on higher levels of standard deviation 
of active return in order to earn higher levels of expected 
active return. These portfolios take more concentrated 
positions in securities with higher expected returns as 
volatility tolerance increases.

We can derive the efficient frontier when leverage 
(including shorting) is not used from either a conven-
tional mean–variance optimization with a zero leverage 
constraint or from a mean–variance-leverage optimiza-
tion with zero tolerance for leverage. As noted on the 
exhibit, every portfolio along the frontier is a “100–0” 
portfolio, meaning it is invested 100% long, with no 
short positions.

The second panel illustrates the efficient frontier 
when the investor’s leverage tolerance is 1. It is derived 
from a mean–variance-leverage optimization, where 
leverage entails a disutility, as specif ied in Equation 
(4). Again, the investor with no tolerance for volatility 
risk would hold the index fund located at the origin. 
But as investor tolerance for volatility increases, the 
optimal portfolio moves out along the efficient frontier, 
achieving higher levels of expected return with higher 
levels of volatility.

As the plot indicates, increasing leverage accompa-
nies increasing volatility. The optimal portfolio ranges 

from a 100–0 long-only portfolio to a 130–30 enhanced 
active portfolio. For the investor with a leverage tolerance 
of 1, any of these portfolios can be optimal, depending 
on volatility tolerance. Investors can achieve higher 
risk–return portfolios with less concentration of posi-
tions when leverage is allowed than when leverage is not 
allowed.

The third panel illustrates the efficient frontier for 
an investor with infinite leverage tolerance. As discussed 
earlier, mean–variance optimization implicitly assumes 
investors have an infinite tolerance for (or no aversion 
to) the unique risks of leverage; it thus provides the same 
result as mean–variance-leverage optimization with 
infinite leverage tolerance. In this case, as the inves-
tor’s volatility tolerance increases, the optimal portfolio 
goes from zero leverage to enhanced active portfolios of 
200–100 to 400–300, and so on. For the investor with 
infinite leverage tolerance, the unique risks of leverage 
do not give rise to any disutility, so this investor takes 
on much more leverage than the investors in the prior 
examples and can achieve a higher expected return at 
any given level of standard deviation of return, albeit 
with increasing leverage risk.

The last panel is identical to the third, except that it 
removes the 10% constraint on individual security active 
weights. Because there is no disutility to leverage and 
no constraint on individual position sizes, the optimal 
portfolios all hold the same proportionate active security 
weights but apply increasing levels of leverage as vola-
tility tolerance increases.

Because each portfolio is just a leveraged version 
of the same set of active positions, and we have assumed 
the EAE structure provides costless self-financing (i.e., 
short proceeds finance additional long positions), the 
efficient frontier is simply a straight line. In this case, 
ever-higher levels of leverage are used to achieve ever-
higher expected returns, along with ever-higher standard 
deviations of return. As with the third panel, the investor 
derives the same efficient frontier by using conventional 
mean–variance optimization or mean–variance-leverage 
optimization, because no disutility is associated with the 
unique risks of leverage.

EFFICIENT FRONTIERS FOR VARIOUS 
LEVERAGE-TOLERANCE CASES

Exhibit 2 displays five different efficient frontiers 
on one chart. Each frontier corresponds to a different 
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level of leverage tolerance within a leverage-tolerance 
range of 0 to 2. Here 0 leverage tolerance again represents 
an investor who is unwilling to use leverage, and higher 
efficient frontiers correspond to investors with greater 
leverage tolerances. The frontier portfolios are con-
strained by the 10% active security weight constraint.

It might at first appear from the exhibit that the 
highest level of leverage tolerance results in the domi-
nant efficient frontier; that is, higher leverage lets the 
investor achieve higher returns at any given level of vola-
tility.8 But one must consider the leverage-tolerance level 
associated with each efficient frontier. When leverage 
aversion is considered, it becomes apparent that each 

frontier consists of the set of optimal portfolios for an 
investor with the given level of leverage tolerance.

For example, consider the three portfolios repre-
sented by the points labeled A, B, and C in Exhibit 2. 
(We provide their characteristics in Exhibit 3.) Portfolio 
A is the optimal portfolio for investor A, who has a 
leverage tolerance of 1 and a volatility tolerance of 0.24. 
This is a 125-25 portfolio with a standard deviation of 
active return of 5% and an expected active return of 
about 3.93%. As shown in the last column, the utility 
for investor A, U

A
, of portfolio A is 2.93. In other words, 

investor A is indifferent between portfolio A, which has 
an expected return of 3.93%, along with volatility and 

E X H I B I T  2
Efficient Frontiers for Various Leverage-Tolerance (τL ) Cases with the 10% Security Active Weight Constraint
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leverage risk, and a hypothetical portfolio with a certain 
return of 2.93% and no volatility and no leverage risk.

Portfolio B dominates portfolio A in an expected 
active return–standard deviation framework, because it 
offers a higher expected active return of 4.39% at the 
same 5% level of standard deviation of active return. But 
it is only optimal for an investor with a leverage tolerance 
of 2 and a volatility tolerance of 0.14; it is suboptimal for 
an investor with a leverage tolerance of 1. Portfolio B 
represents a 139–39 enhanced active portfolio; it entails 
significantly more leverage than the 125–25 portfolio 
A. The last column of Exhibit 3 shows that the utility of 
portfolio B for investor A is 2.72, which is lower than the 
2.93 utility of portfolio A for investor A. The disutility 
of incurring the additional leverage risk more than off-
sets the benefit of the incremental expected return for 
this investor with less tolerance for leverage, and so port-
folio B is suboptimal for investor A.

Finally, consider portfolio C, which has the same 
3.93% expected active return as portfolio A. This is the 
optimal portfolio for investor C, who has a leverage toler-
ance of 2 and a volatility tolerance of 0.09. This portfolio 
also dominates portfolio A in an active return–standard 
deviation framework, because it offers the same expected 
return at a lower standard deviation of active return.

Although portfolio C is optimal for an investor with 
a leverage tolerance of 2, it is suboptimal for investor A, 
who has a leverage tolerance of 1, for the same reason that 
portfolio B is suboptimal: It entails more leverage than 
portfolio A, at 135–35 versus 125–25. Again, the disutility 
of the additional leverage risk more than offsets the ben-
efit of the lower volatility for the investor with less toler-
ance for leverage. See this in the last column of Exhibit 3, 
which shows that investor A receives utility of 2.68 from 
portfolio C, lower than the 2.93 from portfolio A.

Exhibit 2 demonstrates that conventional mean–
variance optimization and efficient frontier analysis are 
inadequate to determine optimal portfolios when inves-

tors use leverage but are averse to leverage risk. The con-
ventional approach fails to recognize that most investors 
are willing to sacrifice some expected return in order to 
reduce leverage risk, just as they sacrifice some expected 
return in order to reduce volatility risk. Because the 
efficient frontier differs for investors with different toler-
ances for leverage, mean–variance-leverage optimization 
must be used to solve for optimal portfolios.

For each of the five efficient frontiers in Exhibit 2, 
volatility tolerance ranges from 0 (the origin) to 2 (the 
rightmost endpoint on each frontier). A curve con-
necting these endpoints would identify portfolios that 
are optimal for investors with a volatility tolerance of 
2 and leverage tolerances ranging from 0 to 2. Which 
portfolio along this curve is optimal for a particular 
investor? The answer depends on the investor’s leverage 
tolerance. (Note that, because different security active 
weight constraints become binding as one moves along 
each of the constant leverage-tolerance frontiers, a curve 
connecting the endpoints would not be smooth.)

An investor with a volatility tolerance of 0 and 
any level of leverage tolerance will choose the portfolio 
located at the origin: an index fund. An investor with a 
leverage tolerance of 0 will choose, from the lowest fron-
tier shown, the portfolio consistent with the investor’s 
volatility tolerance. An investor with a leverage toler-
ance of 2 will choose, from the highest frontier shown, 
the portfolio consistent with the investor’s volatility 
tolerance. The optimal portfolio for an investor with 
any pair of leverage-tolerance and volatility-tolerance 
values between 0 and 2 will lie somewhere within the 
perimeter defined by the leverage- and volatility-toler-
ance frontiers of 0 and 2. Both volatility tolerance and 
leverage tolerance must be specified to determine the 
optimal portfolio for a given investor.

THE EFFICIENT REGION

With mean–variance-leverage optimization, 
optimal portfolios lie on a three-dimensional mean–vari-
ance-leverage surface. The choice of an optimal surface 
portfolio for a given investor depends on that investor’s 
tolerances for volatility risk and leverage risk. Every lever-
age-tolerance level has a corresponding two-dimensional 
mean–variance efficient frontier. Similarly, for a partic-
ular level of volatility tolerance, there is a corresponding 
two-dimensional mean–variance efficient frontier.

E X H I B I T  3
Portfolio Characteristics

*Rounded to the nearest percent.
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Exhibit 4 illustrates the efficient frontiers for var-
ious levels of investor leverage tolerance and those for 
various levels of investor volatility tolerance. Because 
Exhibit 4 assumes no constraint on the security active 
weights, the curve linking the optimal portfolios for an 
investor with a volatility tolerance of 2 is smooth (unlike 
in Exhibit 2).

Furthermore, without the security active weight 
constraints, both the standard deviation of active return 
and the expected active return range higher than in 
Exhibit 2. As either volatility tolerance or leverage tol-
erance declines from 2, the frontiers shift to the left and 

downward. When volatility tolerance is 0, the optimal 
portfolio—an index fund—lies at the origin. Depending 
on the investor’s leverage and volatility tolerances, the 
optimal portfolio will lie somewhere in the mean–
variance-leverage efficient region shown. Once again, the 
critical roles of both leverage and volatility tolerance in 
portfolio selection are apparent.

CONCLUSION

Conventional portfolio theory and mean–variance 
optimization must be augmented to incorporate leverage 

E X H I B I T  4
Efficient Frontiers for Various Leverage- (τL) and Volatility- (τV) Tolerance Cases with No Security 
Active Weight Constraint
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aversion. We propose that portfolio theory’s mean-vari-
ance utility function include a term for leverage aversion, 
thereby transforming it into a mean-variance-leverage 
utility function. We use this specification to show the 
effects of leverage aversion on the efficient frontier.

Conventional mean-variance optimization con-
siders only a portfolio’s expected return and risk as mea-
sured by portfolio volatility. It implicitly assumes that 
investors have an infinite tolerance for the unique risks of 
leverage. In a mean-variance framework, investors prefer 
highly leveraged portfolios, because they offer the highest 
expected active return at each level of active risk.

Leverage, however, entails its own unique set of risks 
and costs. For instance, leverage can give rise to margin 
calls, which can force borrowers to liquidate securities 
at adverse prices due to illiquidity. It can result in losses 
exceeding the capital invested, and even in bankruptcy. 
Most investors are willing to sacrifice some expected 
return in order to reduce leverage risk, just as they sac-
rifice some expected return in order to reduce volatility 
risk. The highly leveraged portfolios that result from con-
ventional mean-variance optimization entail too much 
leverage risk for leverage-averse investors.

We show that, when leverage aversion is included 
in portfolio optimization, lower mean-variance-leverage 
efficient frontiers having less leverage are optimal. Which 
frontier is optimal for a particular investor depends upon 
that investor’s leverage tolerance. The optimal portfolio 
on that frontier for that investor depends upon that inves-
tor’s volatility tolerance.

A mean-variance-leverage eff icient region lies 
within bounded ranges of investor volatility tolerance 
and leverage tolerance. An investor’s volatility and 
leverage tolerances determine the location of that inves-
tor’s optimal portfolio within that region. Both volatility 
tolerance and leverage tolerance play critical roles in port-
folio selection. Investor leverage aversion can have a large 
effect on portfolio choice.

A P P E N D I X

COMPARISON OF THE ENHANCEMENT 
SURFACES USING TWO DIFFERENT 
SPECIFICATIONS

As in Jacobs and Levy [2012], we chose 100 × 100 pairs 
of values for the tolerances (τ

V
, τ

L
) to cover the illustrative 

range [0.001, 2] for a total of 10,000 optimizations. Toler-

ances for volatility and leverage can be greater than 2, and as 
leverage tolerance approaches infinity, the optimal portfolio 
approaches that determined by a conventional mean-variance 
utility function.

To estimate the required inputs for Equation (6)— 
security expected active returns, covariances of security 
active returns, and covariances of security total returns—we 
used daily return data for the constituent stocks in the S&P 
100 Index over the two years (505 trading days) ending on 
September 30, 2011. For estimating security expected active 
returns, we used a random transformation of actual active 
returns while maintaining a skill, or information coefficient 
(correlation between predicted and actual active returns), of 
0.1, representing a manager with strong insight. For a descrip-
tion of the estimation procedure used, see Jacobs and Levy 
[2012]. We assumed the future covariances were known, so 
we calculated them based on the actual daily active returns 
and the actual daily total returns, respectively.

The results from this specification were broadly sim-
ilar to the results from using the specification in Jacobs and 
Levy [2012], which used a constant based on an average of 
individual securities’ active return variances, rather than the 
total variance of individual portfolios. At zero leverage toler-
ance, the optimal portfolios lie along the volatility-tolerance 
axis and have no leverage and hence no enhancement (they 
are long only). At zero volatility tolerance, the portfolios lie 
along the leverage-tolerance axis and have no active return 
volatility and hence hold benchmark weights in each security 
(as in an index fund). For portfolios above the axes, optimal 
enhancement is approximately independent of volatility tol-
erance if the latter is large enough. However, the optimal 
enhancement is highly dependent on the level of leverage 
tolerance chosen. This supports our assertion that investors 
should consider leverage tolerance when selecting an optimal 
portfolio.

The optimal enhancements using the new specification 
are slightly higher (by less than five percentage points) than 
those derived under the prior specification. This is not sur-
prising, given the relationship between the two specifications. 
Note that the utility function represented by Equation (4) is 
equivalent to that of Equation (1) if one multiplies the leverage 
risk term of Equation (1) by the ratio:

 
R

c
T=

σ2

 
(A-1)

Using the expression for the variance of the portfolio’s 
total return from Equation (5) and also Equation (3), Equa-
tion (A-1) can be rewritten as:
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This expression is the ratio of the portfolio’s total return 
variance to the average (across all securities in the selection 
universe) of the variance of each stock’s active returns. Cal-
culating Equation (A-2) across the 10,000 optimal portfolios 
found by using the same constraint set for an enhanced active 
equity (EAE) portfolio and the same sample of S&P 100 
stocks as in Jacobs and Levy [2012], we found R ≈ 0.85.

As might be expected with a ratio close to 1, the results 
from optimization using Equation (4) were similar to those 
from using Equation (1). The major difference is that the new 
specification indicates that slightly more leverage is optimal 
than in the earlier specif ication, within the risk-tolerance 
ranges examined. This is because the ratio R is less than 1, 
implying a lower penalty for leverage risk in Equation (4) 
than in Equation (1).

It is diff icult to draw general conclusions from this 
comparison, however, because R will vary, depending on 
portfolio structure, the particular portfolio and its level of 
enhancement, the sample data, and so on. The optimal port-
folios in Jacobs and Levy [2012] derive from a constant that 
was estimated from the average of individual securities’ active 
return variances. The results ref lected in this article rely on 
the total return variance of a diversified portfolio. Because 
total return variance is larger than active return variance, this 
will raise R, while portfolio-diversification effects will lower 
R. The net effect depends on the particular situation, so R 
may be greater than or less than one.

ENDNOTES

We thank Judy Kimball and David Starer for helpful 
comments.

1In a section entitled “The Effect of Leverage,” Kroll, 
Levy, and Markowitz [1984] stated: “Leverage increases the 
risk of the portfolio. If the investor borrows part of the funds 
invested in the risky portfolio, then the f luctuations of the 
return on these leveraged portfolios will be proportionately 
greater.” In the present article, we consider other risks unique 
to using leverage.

2Certain legal entities, such as limited partnerships and 
corporations, can limit investors’ losses to their capital in the 
entity. Losses in excess of capital would be borne by others, 
such as general partners who have unlimited liability or prime 
brokers.

3Incorporating a leverage-tolerance term in the utility 
function allows the investor to consider the economic trade-
offs between expected return, volatility risk, and leverage 
risk. Using a constraint for leverage does not allow for con-
sideration of the trade-offs with leverage risk. The level of 
leverage imposed with a constraint may be either too tight 
or too loose compared with the optimal leverage level, given 
the investor’s leverage tolerance.

4The use of σ p
2  as the measure of volatility risk is 

appropriate if active returns are normally distributed and the 
investor is averse to the variance of active returns, as well as 
for certain concave (risk-averse) utility functions (Levy and 
Markowitz [1979]). If the return distribution is not normal, 
displaying skewness or kurtosis (“fat tails”) for instance, or 
the investor is averse to downside risk (semi-variance) or 
value at risk (VaR), the conclusions of this article still hold. 
That is, the investor should include a leverage-aversion term 
in the utility function, along with the appropriate measure 
of volatility risk, with neither risk term necessarily assuming 
normality.

Leverage may give rise to fatter tails in returns. For 
example, a drop in a stock’s price may trigger margin calls, 
which may result in additional selling, while an increase in a 
stock’s price may lead investors to cover short positions, which 
can make the stock’s price rise even more.

Note that, if volatility risk is measured as the variance 
of total returns (such as for an absolute-return strategy) rather 
than as the variance of active returns, the conclusions of this 
article still hold.

5When the investor’s leverage tolerance is 0, portfolio 
leverage, Λ, will be 0. Note that because short positions entail 
unlimited liability, like leveraged long positions, they expose 
the portfolio to losses beyond the invested capital. Hence, 
investors with 0 leverage tolerance would impose a non-nega-
tivity constraint on the h

i
s—that is, a no-shorting constraint.

We assume that investors have the same aversion to 
leveraged long positions as they do to short positions; how-
ever, this assumption may not be the case in practice, because 
short positions have potentially unlimited liability and are 
susceptible to short squeezes. One could model the aversion 
to long and short positions asymmetrically. Because doing 
so would complicate the algebra, for simplicity we use a 
common leverage tolerance.

6In practice there would be financing costs (such as stock 
loan fees); furthermore, hard-to-borrow stocks may entail higher 
fees. For more on EAE portfolios, see Jacobs and Levy [2007].

7For expository purposes, we estimate the variance of 
the portfolio’s total return based on historical data in the 
same way that we estimate the variance of the portfolio’s 
active return, but in practice an investor could estimate these 
variances on a forward-looking basis, taking into account 
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security position sizes relative to the market and the expected 
market impact upon liquidation. Note that leverage increases 
portfolio illiquidity. However, leverage and illiquidity are 
different, because illiquid portfolios without any leverage are 
not exposed to margin calls and cannot lose more than the 
capital invested.

8Note that the expected active returns shown do not 
ref lect any costs associated with leverage-related events, such 
as forced liquidation at adverse prices or bankruptcy. These 
costs, however, are ref lected in the disutility implied by the 
leverage-aversion term.
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